图像聚类是一种非常有用的技术,可广泛应用于各个区域,包括遥感。最近,通过自我监督学习的视觉表示大大改善了图像聚类的性能。为了进一步改善训练良好的聚类模型,本文提出了一种新的方法,该方法是根据对当前群集的属性在每个集群中首先对样本进行排名的方法模型。为了对样品进行排名,我们开发了一种根据当前群集的样本的可能性,根据它们是否位于人口稠密的社区中,而在训练模型的同时,我们提供了加权排名样本的策略。我们提出了广泛的实验结果,这些结果表明新技术可用于改善最新的图像聚类模型,从而实现准确性的性能增长范围从$ 2.1 \%\%$到$ 15.9 \%$ $。在遥感中的各种数据集上执行我们的方法,我们表明我们的方法可以有效地应用于遥感图像。
translated by 谷歌翻译
在社交媒体平台上共享的用户视频通常会受到由未知专有处理程序引起的降解,这意味着它们的视觉质量比原始产品差。本文提出了一个新的一般视频修复框架,用于恢复社交媒体平台上共享的用户视频。与执行端到端映射的大多数基于学习的视频恢复方法相反,在该方法中,特征提取大部分被视为黑匣子,从某种意义上说,功能通常未知的角色,我们的新方法,称为视频通过自适应退化感测(投票)恢复,引入了降解功能图(DFM)的概念,以明确指导视频恢复过程。具体而言,对于每个视频框架,我们首先自适应地估算其DFM以提取代表难以恢复其不同区域的功能。然后,我们将DFM馈送到卷积神经网络(CNN)以计算层次结构降解功能以调节端到端视频恢复骨干网络,从而明确地将更多注意力引起到潜在的更难恢复领域的领域,这又要引起铅的领域。增强恢复性能。我们将解释投票框架的设计基本原理,并提出广泛的实验结果,以表明新的投票方法在定量和定性上都优于各种最新技术。此外,我们为在不同社交媒体平台上共享的用户视频的大规模现实世界数据库提供了贡献。代码和数据集可从https://github.com/luohongming/votes.git获得
translated by 谷歌翻译
在有监督的深度学习中,学习远程感应图像(RSI)的良好表示依赖于手动注释。但是,在遥感领域,很难获得大量的标记数据。最近,自欺欺人的学习显示了其出色的学习图像表示形式的能力,尤其是实例歧视的方法。比较实例歧视的方法,基于聚类的方法不仅查看与``正面样本''相同图像的转换,而且还要查看相似的图像。在本文中,我们提出了一种基于群集的代表学习方法。我们首先介绍衡量表示表示的歧视性的数量,我们从中表明,即使分布都需要最判别的表示。这提供了理论上的见解,说明为什么均匀分发图像效果很好。我们注意到,只有保留邻里关系的均匀分布是可取的因此,我们开发了一种算法,该算法将神经网络的输出转换为实现均匀分发样品的目标,同时保留了输出的邻居关系。广泛的实验表明,我们的方法可以学习比或更好的表示形式。艺术状态的方法,我们的方法执行com在各种RSI数据集上有效地稳健地推荐。
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy $\mathcal{M}_i$ and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source $\mathcal{M}_i$. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.
translated by 谷歌翻译
Video Super-Resolution (VSR) aims to restore high-resolution (HR) videos from low-resolution (LR) videos. Existing VSR techniques usually recover HR frames by extracting pertinent textures from nearby frames with known degradation processes. Despite significant progress, grand challenges are remained to effectively extract and transmit high-quality textures from high-degraded low-quality sequences, such as blur, additive noises, and compression artifacts. In this work, a novel Frequency-Transformer (FTVSR) is proposed for handling low-quality videos that carry out self-attention in a combined space-time-frequency domain. First, video frames are split into patches and each patch is transformed into spectral maps in which each channel represents a frequency band. It permits a fine-grained self-attention on each frequency band, so that real visual texture can be distinguished from artifacts. Second, a novel dual frequency attention (DFA) mechanism is proposed to capture the global frequency relations and local frequency relations, which can handle different complicated degradation processes in real-world scenarios. Third, we explore different self-attention schemes for video processing in the frequency domain and discover that a ``divided attention'' which conducts a joint space-frequency attention before applying temporal-frequency attention, leads to the best video enhancement quality. Extensive experiments on three widely-used VSR datasets show that FTVSR outperforms state-of-the-art methods on different low-quality videos with clear visual margins. Code and pre-trained models are available at https://github.com/researchmm/FTVSR.
translated by 谷歌翻译
Due to the issue that existing wireless sensor network (WSN)-based anomaly detection methods only consider and analyze temporal features, in this paper, a self-supervised learning-based anomaly node detection method based on an autoencoder is designed. This method integrates temporal WSN data flow feature extraction, spatial position feature extraction and intermodal WSN correlation feature extraction into the design of the autoencoder to make full use of the spatial and temporal information of the WSN for anomaly detection. First, a fully connected network is used to extract the temporal features of nodes by considering a single mode from a local spatial perspective. Second, a graph neural network (GNN) is used to introduce the WSN topology from a global spatial perspective for anomaly detection and extract the spatial and temporal features of the data flows of nodes and their neighbors by considering a single mode. Then, the adaptive fusion method involving weighted summation is used to extract the relevant features between different models. In addition, this paper introduces a gated recurrent unit (GRU) to solve the long-term dependence problem of the time dimension. Eventually, the reconstructed output of the decoder and the hidden layer representation of the autoencoder are fed into a fully connected network to calculate the anomaly probability of the current system. Since the spatial feature extraction operation is advanced, the designed method can be applied to the task of large-scale network anomaly detection by adding a clustering operation. Experiments show that the designed method outperforms the baselines, and the F1 score reaches 90.6%, which is 5.2% higher than those of the existing anomaly detection methods based on unsupervised reconstruction and prediction. Code and model are available at https://github.com/GuetYe/anomaly_detection/GLSL
translated by 谷歌翻译
With the increase in health consciousness, noninvasive body monitoring has aroused interest among researchers. As one of the most important pieces of physiological information, researchers have remotely estimated the heart rate (HR) from facial videos in recent years. Although progress has been made over the past few years, there are still some limitations, like the processing time increasing with accuracy and the lack of comprehensive and challenging datasets for use and comparison. Recently, it was shown that HR information can be extracted from facial videos by spatial decomposition and temporal filtering. Inspired by this, a new framework is introduced in this paper to remotely estimate the HR under realistic conditions by combining spatial and temporal filtering and a convolutional neural network. Our proposed approach shows better performance compared with the benchmark on the MMSE-HR dataset in terms of both the average HR estimation and short-time HR estimation. High consistency in short-time HR estimation is observed between our method and the ground truth.
translated by 谷歌翻译
Currently, most deep learning methods cannot solve the problem of scarcity of industrial product defect samples and significant differences in characteristics. This paper proposes an unsupervised defect detection algorithm based on a reconstruction network, which is realized using only a large number of easily obtained defect-free sample data. The network includes two parts: image reconstruction and surface defect area detection. The reconstruction network is designed through a fully convolutional autoencoder with a lightweight structure. Only a small number of normal samples are used for training so that the reconstruction network can be A defect-free reconstructed image is generated. A function combining structural loss and $\mathit{L}1$ loss is proposed as the loss function of the reconstruction network to solve the problem of poor detection of irregular texture surface defects. Further, the residual of the reconstructed image and the image to be tested is used as the possible region of the defect, and conventional image operations can realize the location of the fault. The unsupervised defect detection algorithm of the proposed reconstruction network is used on multiple defect image sample sets. Compared with other similar algorithms, the results show that the unsupervised defect detection algorithm of the reconstructed network has strong robustness and accuracy.
translated by 谷歌翻译